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Density modification is a standard technique in macromole-

cular crystallography that can significantly improve an initial

electron-density map. To obtain optimal results, the initial and

density-modified map are combined. Current methods assume

that these two maps are independent and propagate the initial

map information and its accuracy indirectly through pre-

viously determined coefficients. A multivariate equation has

been derived that no longer assumes independence between

the initial and density-modified map, considers the observed

diffraction data directly and refines the errors that can occur in

a single-wavelength anomalous diffraction experiment. The

equation has been implemented and tested on over 100 real

data sets. The results are dramatic: the method provides

significantly improved maps over the current state of the art

and leads to many more structures being built automatically.
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1. Introduction

The single-wavelength anomalous diffraction (SAD) experi-

ment is a widely used technique to provide an estimate of the

unknown structure-factor phases and thus experimentally

solve a macromolecular structure. To improve an electron-

density map obtained by single-wavelength anomalous

diffraction or another experimental method providing

initial phase estimates, crystallographers employ density-

modification techniques. Density modification (DM) relies on

prior information. For example, if the experimentally deter-

mined map is of sufficient quality to distinguish between

regions of ordered macromolecule and disordered solvent, the

electron density of the solvent region can be flattened (Wang,

1985; Leslie, 1987). This density-modified map is then

combined with the initial density map and the process is

iterated, as illustrated in Fig. 1.

‘Phase combination’ or combining the original and density-

modified electron-density map is important for the success of

DM. Many currently used density-modification programs

[e.g. DM (Cowtan, 1994), SOLOMON (Abrahams & Leslie,

1996), SHELXE (Sheldrick, 2008) and CNS (Brünger et al.,

1998)] employ the SIGMAA (Lunin & Urzhumtsev, 1984;

Read, 1986) algorithm. In the SIGMAA algorithm, the

original experimentally determined phases, represented by

Hendrickson–Lattman coefficients (Hendrickson & Lattman,

1970), are assumed to be independent of the density-modified

structure factors and are combined with them through a

heuristic weighting scheme (Read, 1997). However, the

density-modified map is obtained from the experimental map,

invalidating this assumption of independence. Methods have

been developed to reduce the correlation between the original



and the density-modified structure factors via the �-correction

(Abrahams & Leslie, 1996; Abrahams, 1997) or ‘statistical

density modification’ (Terwilliger, 2000; Cowtan, 2000).

However, the correlation is not considered explicitly and still

remains.

Most density-modification programs obtain prior phase

information in the form of Hendrickson–Lattman coefficients.

When these coefficients are used, it is assumed that errors in

structure factors can be represented by a one-dimensional

probability distribution over phases. Furthermore, any com-

puter program that inputs Hendrickson–Lattman coefficients

assumes that the program that generated them can provide a

reliable and accurate estimate of the phase probability.

We have developed a multivariate probability distribution

that no longer assumes independence between the initial and

combined electron-density map, but considers the correlation

between the observed structure-factor amplitudes, the density-

modified structure factor and a heavy-atom substructure for

a single-wavelength anomalous diffraction experiment. The

equation generates phase information directly from the heavy-

atom substructure and the observed diffraction data and thus

does not require input of Hendrickson–Lattman coefficients.

The equation also models and refines the errors in the density-

modified and heavy-atom structure factors to provide an

advanced multivariate model for a single-wavelength anom-

alous diffraction experiment and phase combination. We have

implemented this ‘SAD-DM’ function in a new program called

MULTICOMB. We were motivated to consider these methods

for phase combination since our previous work in applying

similar multivariate methods to experimental phasing (Pannu

& Read, 2004; Ness et al., 2004) and in model building with

iterative refinement (Skubák et al., 2004, 2005) produced

better results compared with previous approaches.

2. Methods

The multivariate SAD-DM function used for correlated DM

phase combination implemented in MULTICOMB is the

following:

PSAD-DM ¼ PðjFþj; jF�j; jFDMj; �DM; jFHAj; �HAÞ

¼
2jFþjjF�j detð�2Þ
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In (1), |F +| and |F�| denote the observed Bijvoet/Friedel pairs

from a SAD experiment and |FDM|, �DM and |FHA|, �HA are the

amplitude and phase of the density-modified and heavy-atom

structure factors, respectively. � is the covariance matrix, with

its elements denoted by aij, and �2 is the bottom-right sub-

matrix of �, with its elements denoted by cij. This equation has

been derived in Appendix A of Pannu & Read (2004) and

Skubák et al. (2004) in the context of SAD heavy-atom and

protein refinement.

To compare MULTICOMB with the current SIGMAA

program (Read, 1986), we used SOLOMON from CCP4

(Collaborative Computational Project, Number 4, 1994). The

modular design of SOLOMON allowed an easy switch

between MULTICOMB and SIGMAA for testing purposes.

In our tests, we started with merged diffraction data from a

wide range of real SAD data sets. Only the intensities or

structure-factor amplitudes, together with the sequence of a

protein monomer, the number of substructure atoms expected

per monomer and the f 0 and f 00 values for the substructure

atoms, were input into the CRANK (Ness et al., 2004)

structure-solution suite. CRANK performed substructure

detection using either AFRO (Pannu et al., unpublished work)

and CRUNCH2 (de Graaff et al., 2001) or SHELXC,

SHELXD and SHELXE (Sheldrick, 2008). BP3 (Pannu &

Read, 2004) was used for substructure phasing and 20 cycles of

density modification were performed in SOLOMON. Infor-

mation about noncrystallographic symmetry was not used in

density modification. Either three cycles of Buccaneer or ten
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Figure 1
Flow chart of the iterative procedure of density modification.



cycles of ARP/wARP both iterated with REFMAC

(Murshudov et al., 1997) using the SAD refinement target

(Skubák et al., 2004) were used for automated model building.

A resolution cutoff or specification of the number of disulfide

bonds was needed for successful substructure determination

for a few data sets. Default values of all other options or

parameters were used in all programs. In the results shown

below, for any data set the changes shown were caused only by

running either SIGMAA or MULTICOMB with SOLOMON.

We used a total of 132 real data sets from several different

sources as listed in Appendix A. The majority of these struc-

tures were originally solved by multiwavelength anomalous

diffraction (MAD), single isomorphous replacement with

anomalous scattering or molecular replacement. Data sets

where we could not determine the substructure or where a

program within any pipeline terminated abnormally were

excluded from the statistics presented, resulting in 102 data

sets. In cases where multiple SAD data sets were available (i.e.

data collected either at different wavelengths or processed

with different redundancies), the SAD data set corresponding

to the highest f 00 value and to the highest data redundancy was

used. The data sets provided a wide range of resolution (from

0.94 to 3.29 Å) and anomalous scatterers, including selenium,

sulfur, chloride, sulfate, manganese, bromide, calcium and

zinc.

3. Results

Fig. 2 compares the quality of the electron-density maps

obtained by density modification using the SIGMAA algo-

rithm with the maps obtained using the multivariate SAD-DM

function for the 102 SAD data sets. The quality of a map is

measured by its correlation with the map constructed from the

deposited model. In general, the graph can be divided into

three distinct regions. In the first region the map correlation

for both algorithms is less than 0.2. This region shows test

cases where the initial experimental phase information is too

weak and results in an uninterpretable electron-density map.

In the second region, which contains map correlations over 0.8

after DM using both algorithms, all the points lie very close to

the diagonal line, indicating that both algorithms performed

similarly, producing high-quality phases for these data sets.

The remaining region shows the greatest variation between

the two methods: in this region there is a 21.4% increase in

average map correlation for the multivariate SAD-DM func-

tion. The overall increase in average map correlation calcu-

lated from all data sets is 16.9% (from 0.539 to 0.630).

In Fig. 3 the data sets are divided into two categories based

on the improvement of SAD-DM over SIGMAA maps and

shown as a function of data resolution and map correlation

after experimental phasing. The figure indicates that when the

input map correlation is below 0.3 neither method can usually

significantly improve the map. Futhermore, when the input

map correlation is above 0.4 and the data set has a resolution

of 2.0 Å or better both algorithms usually produce equally

high-quality maps. A region in which SAD-DM clearly out-

performs SIGMAA are data sets with a resolution lower than

2.1 Å and an input map correlation higher than 0.35.
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Figure 2
Correlation of maps obtained from the multivariate SAD-DM function (x
axis) and the SIGMAA algorithm (y axis) with maps generated from the
final deposited models.

Figure 3
Map improvement of the SAD-DM algorithm over SIGMAA as a
function of resolution and map correlation after experimental phasing.
The data sets were divided into two groups based on the difference
between the SAD-DM and SIGMAA map correlations with the
deposited structure: the blue points represent data sets where the
SAD-DM map correlation is better than the SIGMAA map correlation
by 0.03 or higher, while a correlation difference of less than 0.03 is shown
in purple.



Next, we examined the effect of the different phase-

combination algorithms on automated model building with

iterative model refinement using ARP/wARP (Perrakis et al.,

1999) and Buccaneer (Cowtan, 2006). Since ARP/wARP and

Buccaneer use different protein-tracing algorithms, examining

the behaviour of both programs provides a better comparison

of the two different phase-combination algorithms. Fig. 4(a)

shows the results from Buccaneer, while Fig. 4(b) shows the

results produced by ARP/wARP. The two graphs can again

be divided into three distinct regions: a region in which the

fraction of the model correctly built is under 10%, indicating

that model building has failed for both phase-combination

algorithms, a region in which both phase-combination algo-

rithms lead to a model that is over 80% correctly built and a

remaining region which shows the greatest disparity between

the two phase-combination methods. This last region includes

36 data sets for which the maps produced by the multivariate

SAD-DM function result in a 59.6% increase in the average

fraction of the model built by ARP/wARP. The same region

contains 50 data sets when using Buccaneer, resulting in a

93.0% increase in the fraction of the model built using

multivariate methods over that obtained using SIGMAA.

4. Discussion

The results clearly show that in general the multivariate SAD-

DM function significantly outperforms the existing phase-

combination method in SIGMAA. The improved map corre-

lation provided by the multivariate SAD-DM function led to a

16.4% improvement in the overall average fraction built using

ARP/wARP and a 36.7% improvement when using Buccaneer

compared with the state of the art (Table 1). The difference

in the degree of improvement between the model-building

programs is mainly caused by the multivariate SAD refine-

ment target used with ARP/wARP, which enables successful

model building after SIGMAA for many data sets that would

otherwise fail: using the default Rice target the ARP/wARP

improvement is similar to that of Buccaneer (44%).

Although only SAD data were used in the above tests, the

multivariate framework laid out is by no means only limited

to SAD experiments. Indeed, we have already implemented a

multivariate single isomorphous replacement with anomalous

scattering function for phase combination and the initial

results are very promising (Skubák & Pannu, in preparation).

Furthermore, a multivariate MAD function is currently being

implemented.

The introduction of the multivariate function to phase

combination has important consequences for automated

structure solution and manual structure solution at lower

resolutions. The same multivariate function described above is

used in substructure phasing, density modification and model

refinement. Thus, at any step in the process up to or including

substructure phasing, if a correct anomalous or even non-

anomalous portion of the structure is added significantly

improved phases can be generated via simultaneously con-

sidering phasing, density modification and model refinement

together. In essence, the successful implementation of multi-
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Figure 4
Performance of the multivariate SAD-DM function versus the SIGMAA
algorithm in terms of the fraction correctly built by the model-building
programs (a) Buccaneer and (b) ARP/wARP. The x axis and y axis are the
fraction of the model built after phase combination with MULTICOMB
and SIGMAA, respectively. A residue is regarded as ‘correctly built’ if it
is within 1 Å of the deposited model.

Table 1
Average fraction of the model correctly built by Buccaneer and ARP/
wARP.

SIGMAA SAD-DM

Buccaneer 0.446 0.610
ARP/wARP 0.533 0.620



variate methods to phase combination should lead to a new

paradigm in which the crystallographer no longer considers

phasing, density modification and model refinement as sepa-

rate parts of structure determination but as one process using

one mathematical function that can lead to combined and

significant improvements over considering them separately.

APPENDIX A
Data sets

A total of 132 SAD data sets were used and were composed of

78 data sets from the Joint Center for Structural Genomics

(JCSG; http://www.jcsg.org/; 1vjn, 1vjr, 1vjz, 1vk4, 1vkm, 1vlm,

1vqr, 1z82, 1zy9, 1zyb, 2a2m, 2a2o, 2a3n, 2a6b, 2aml, 2avn,

2b8m, 2etd, 2etj, 2ets, 2etv, 2evr, 2f4p, 2fea, 2ffj, 2fg0, 2fg9,

2fna, 2fqp, 2fur, 2fzt, 2g0t, 2g42, 2gc9, 2nlv, 2nuj, 2nwv, 2o08,

2o1q, 2o2x, 2o2z, 2o3l, 2o62, 2o7t, 2o8q, 2obp, 2oc5, 2od5,

2od6, 2oh3, 2okc, 2okf, 2ooj, 2opk, 2osd, 2otm, 2ozg, 2ozj,

2p10, 2p4o, 2p7h, 2p7i, 2p97, 2pg3, 2pg4, 2pgc, 2pim, 2pn1,

2pnk, 2ppv, 2pr7, 2prr, 2prv, 2prx, 2pv4, 2pw4, 2b78 and 2b79);

23 data sets from Mueller-Dieckmann et al. (2007) (2g4h, 2g4i,

2g4j, 2g4k, 2g4p, 2g4q, 2g4l, 2g4n, 2g4o, 2g4r, 2g4s, 2g4t, 2g4u,

2g4v, 2g4w, 2g4x, 2g4y, 2g4z, 2ill, 2g51, 2g52, 2g54 and 2g55);

and 31 from various other individual data-set contributors:

1e42 (Owen, Vallis et al., 2000), 1e6i (Owen, Ornaghi et al.,

2000), 1hf8 (Ford et al., 2001), 2ahy (Shi et al., 2006), 2hba

(J.-H. Cho, S. Sato, E. Y. Kim, H. Schindelin & D. P. Raleigh,

unpublished work), 2o0h (Sun et al., 2007), 2rkk (Xiao et al.,

2008), 3bpj (L. Nedyalkova, B. Hong, W. Tempel, F. Mac-

Kenzie, C. H. Arrowsmith, A. M. Edwards, J. Weigelt, A.

Bochkarev & H. Park, unpublished work), 2fdn (Dauter et al.,

1997), 1of3 (Boraston et al., 2003), 1i4u (Gordon et al., 2001),

1dw9 (Walsh et al., 2000), 1v0o (Holton et al., 2003), 1fse

(Ducros et al., 2001), 1xib (Carrell et al., 1989), 1fj2 (Devedjiev

et al., 2000), 1h29 (Matias et al., 2002), 1c8u (Jia et al., 2000),

1lvy (Schiltz et al., 1997), 1lz8 (Dauter et al., 1999), 1e3m

(Lamers et al., 2000), 1ga1 (Dauter et al., 2001), 1djl (White et

al., 2000), 1dtx (Skarzynski, 1992), 1dpx (Weiss, 2001), 1mso

(Smith et al., 2003), 1ocy (Thomassen et al., 2003), 1rju

(Calderone, 2004), 1rgg (Sevcik et al., 1996), 1m32 (Chen et al.,

2002) and a subtilisin data set (Betzel et al., 1988; Dauter et al.,

2002).
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M. Weiss, C. Mueller-Dieckmann and Z. Dauter. We thank

R. A. G. de Graaff, J. P. Abrahams and K. Cowtan for useful

discussions. Funding for this work was provided by Leiden

University, the Nederlandse Organisatie voor Wetenschap-

pelijk Onderzoek (NWO) and Cyttron. MULTICOMB will be
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of CCP4.
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